

Statistical Sciences Group Overview

Sallie Keller-McNulty, Ph. D. sallie @lanl.gov, 505-665-3957

http://www.stat.lanl.gov

Los Alamos National Laboratory

Vision:

We serve the nation by developing and applying the best science and technology to make the world a better and safer place.

Mission:

- Ensure the safety and reliability of the U.S. Nuclear deterrent.
- Reduce the global threat of weapons of mass destruction.
- Solve national problems in energy, environment, infrastructure and health security.

LANL is operated by the University of California for the U.S. Department of Energy

Los Alamos 1945

NATIONAL LABORATORY

Los Alamos 2002

Statistical Sciences Group

Mission:

Bring statistical reasoning and rigor to multi-disciplinary scientific investigations through development, application, and communication of cutting-edge statistical sciences research.

Group Composition:

- 17 Ph. D. Statisticians
- 3 Ph. D. Cultural Anthropology, Sociology, Rhetoric
- 4 MS/BS Statisticians
- 1 Ph. D., 1 BS Computer Scientists
- 2 Electronic Communications support staff
- Office support and system administration

Special Programs:

- Post Docs
- GRAs

Group D-1/LA-UR-01-3053

- Visiting Faculty
- Workshops and Conferences

How do we work?

- Both basic and applied statistical research problems, broadly defined.
- Work on funded projects, some led within the group and some by other groups.
- Funding is strong, thus allowing us to pick and choose which projects to work on as well as directions for the group.
 - Current Funding Sources: DOE, DOD, NIH, NCES, NSF, Industrial Partners.
- Collaborate with statisticians in the group and with scientists throughout the Lab and beyond (visiting faculty).
- Good mentorship.

We work with:

Engineers

Computer scientists (simulation modelers)

Chemists

Biologists

Environmental scientists

Applied mathematicians

Each other!

What We Do Well

- Reliability
- Information Integration Technology
- Theory and Methods for Computer Model Evaluation
- Statistical Population Bounding
- Monte Carlo Methods
- Computational Statistics
- Biological Sciences Applications

Reliability

- Not boring!
- Historically: reliability of weapon systems
- Particularly important and challenging when some classes of tests are prohibited
- Now: reliability of manufacturing processes and design processes
- Reliability of world's fastest computer
- Competing Risk Models
- One-of-a-Kind Questions
- Hybrid Design

Group D-1/LA-UR-01-3053

Biological Sciences Applications

Research Areas:

- Large-Scale Epidemiological Simulation (EpiSims)
- Genetic Data Analysis (AFLP Data)
- (National) Bio-Defense Initiative
- Ecological and Environmental Statistics

Statistical Challenges:

- Information Integration
- Computer Model Evaluation
- Uncertainty Quantification
- Variance Estimation
- Spatio-Temporal Data

Bio-Early Warning System:

Statistical Population Bounding

Tolerance limits provide bounds at which no more than a specified % of the population will fail.

Confidence limits bound the mean function with a specified level of confidence.

Prediction limits bound individual predicted points.

Tolerance bounds contain a specified proportion of a population with a desired confidence.

Kinetics Model for Degradation of Estane Molecular Weight

Advanced Statistical Techniques Such As Computational Resampling Allow Population Bounding of the Predictions

Information Integration Technology

Develop a "standard" framework of processes, methods and tools useful for evolving R&D to support decision making under uncertainty.

Group D-1/LA-UR-01-3053

Computational Statistics

- Existing tools are insufficient for laboratory methodology development
 - High dimensional spaces
 - Incorporation of importance sampling
 - Complex Bayesian methods
 - Convergence diagnostics and mixing improvements
- Need computational environments for rapid prototyping of new methods, particularly MCMC based methods
- Extensible object-oriented system (YADAS)

Monte Carlo Methods

- Stochastic simulation for many processes of interest involves modeling them as Markov chains with suitablydefined continuous state spaces.
- Examples:
 - Simulating physical processes and studying statistical physics:
 - ★ Movement of pollutants, neutrons, or agents
 - Rare event simulation
 - Simulating from distributions with widely separated peaks
 - Metropolis algorithm with "wrong" equilibrium distribution for speed and adjusting the calculations afterwards: importance sampling

